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 The threat of cyber attacks against critical defense systems is becoming 
increasingly complex and dynamic, requiring adaptive and proactive 
prediction mechanisms. This study aims to develop a Recurrent Neural 
Network (RNN) model to predict cyber attacks on critical defense 
systems with high accuracy and generalization capabilities against new 
attacks. The CICIDS2020 dataset was used to train and test the model, 
with 70% of the data allocated for training, 15% for validation, and 15% 
for testing. The RNN architecture was optimized by selecting the number 
of hidden layers, the number of neurons per layer, the activation 
function, and the application of dropout and regularization to minimize 
the risk of overfitting. The model was trained using the Backpropagation 
Through Time (BPTT) algorithm and evaluated using accuracy, precision, 
recall, F1-score, and AUC metrics. The results show that RNN 
outperforms LSTM, Random Forest, and SVM algorithms, with an 
accuracy of 97.8%, precision of 96.5%, recall of 95.9%, F1-score of 96.2%, 
and AUC of 0.981, and is capable of detecting rare attacks. These findings 
confirm the effectiveness of RNN in capturing long-term temporal 
patterns in cyberattack data and providing adaptive predictions for new 
attacks. The practical implications of this research include strengthening 
critical defense systems through early detection and real-time mitigation 
of cyberattacks, as well as providing a basis for the development of 
reliable proactive security systems. 
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1. INTRODUCTION 
The rapid development of information and communication technology has had a significant impact 
on various aspects of life, including the national defense sector (Bilan et al., 2023; Pătraşcu, 2021). 
Modern defense systems no longer rely solely on conventional military strength, but also on digital 
infrastructure that supports strategic functions, ranging from command and communication systems 
to defense logistics (Burmaoglu et al., 2019; Guerra, 2024; Mustafovski, 2025). This high dependence 
on digital technology, on the one hand, provides efficiency and speed in decision-making, but on the 
other hand, increases vulnerability to cyber attacks. In the context of contemporary geopolitics, cyber 
attacks have even been seen as an instrument of asymmetric warfare capable of undermining the 
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stability of a country without direct physical confrontation (Adeyeri & Abroshan, 2024; Dr. Zeeshan 
Faisal Khan, 2025). The threat of cyber attacks on critical defense systems is becoming increasingly 
complex. Attacks are no longer simple or random, but organized, sustained, and unpredictable. 
Threats such as advanced persistent threats (APTs), zero-day exploits, and artificial intelligence-based 
attacks have become serious challenges that can paralyze defense systems in a short time. This 
complexity requires a cyber defense mechanism that is not only reactive, responding after an attack 
has occurred, but also proactive, with the ability to predict potential attacks before their impact 
spreads. Thus, cyber attack prediction systems have become an inevitable strategic necessity in efforts 
to strengthen national defense resilience (Steingartner et al., 2021; Vaseashta, 2022). Traditional efforts 
to detect cyber attacks still largely rely on signature-based detection systems and static rules, which 
have limitations in dealing with new attack patterns (Soe et al., 2019). These approaches often fail to 
recognize undocumented attacks, creating significant gaps in defense. In line with the development of 
artificial intelligence technology, machine learning and deep learning-based approaches have been 
introduced as alternative solutions to overcome the limitations of conventional methods (Gupta et al., 
2021; Rani et al., 2022). These models have the ability to analyze massive and dynamic attack data, 
while identifying anomaly patterns that are not easily detected by traditional methods. In this 
framework, the development of predictive models capable of capturing temporal patterns from attack 
data has become increasingly important. Critical defense systems often generate sequential data that 
reflects the dynamics of attacks over time, making the Recurrent Neural Network (RNN)-based 
approach relevant. RNN has the ability to process time series data and identify long-term 
dependencies, making it a potential candidate in building intelligent, adaptive, and proactive cyber 
attack prediction systems. Thus, the integration of RNN technology in the context of cyber defense is 
expected to improve the resilience of national defense against increasingly complex digital threats 
(Dari et al., 2023; Rosenberg et al., 2019; Sahin, 2021). 

The increasing intensity and complexity of cyber attacks against critical defense systems pose 
significant challenges in maintaining national stability and security (Lehto, 2022; Li & Liu, 2021). 
Conventional cyber defense systems, which are reactive in nature, have proven to be ineffective 
because they only respond after an attack has occurred. This situation causes losses that are not only 
technical, such as damage to digital infrastructure, but also strategic, such as disruption of military 
operations, leakage of intelligence data, and loss of public confidence in the state's ability to protect 
its digital sovereignty. The limitations of traditional approaches are even more apparent when dealing 
with zero-day attacks and layered attacks that exploit system vulnerabilities gradually, making early 
detection nearly impossible with signature-based or static rule-based methods. The ever-evolving 
dynamics of cyberattack data pose their own difficulties in the modeling process. This data generally 
takes the form of time series that reflect attacker behavior patterns, system interactions, and recurring 
anomalies. Attack patterns are not linear, but are often hidden in long-term interactions and depend 
on specific temporal contexts. Unfortunately, most cyber attack detection models that have been 
developed are still limited to identifying static patterns or independent feature analysis, without 
considering the complexity of the temporal relationships between events. As a result, the models 
produced tend to have low accuracy in predicting new attacks and are less adaptive to scenarios that 
have not been previously trained. Another problem lies in the limitations of research that focuses on 
critical defense systems as objects of study. Most previous studies have emphasized general 
infrastructure such as corporate networks or banking systems, so the findings are not entirely relevant 
in the context of national defense. In fact, critical defense systems have unique characteristics, 
including a high level of confidentiality, interconnection with national security missions, and greater 
exposure to high-tech cyber attacks. Thus, there is still a gap in the development of cyber attack 
prediction models specifically aimed at strengthening critical defense resilience. Based on these issues, 
an approach is needed that can overcome the limitations of conventional methodologies while 
addressing the challenges of modeling temporal and complex attack data. The use of Recurrent Neural 
Network (RNN) architecture is seen as a potential solution due to its ability to capture long-term 
dependencies and sequential patterns in attack data. However, the application of RNN specifically in 
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the context of predicting attacks on critical defense systems is still rare. This opens up significant 
research opportunities to develop more accurate, adaptive, and applicable RNN-based predictive 
models to proactively strengthen cyber defense (Khekare et al., 2023; Padmavathy, n.d.). 

Studies on cyber attack detection and prediction have been conducted by researchers using 
various approaches, but most still face limitations in terms of effectiveness and generalization 
capabilities. For example, research conducted by Díaz-Verdejo, Jesús, et al. (2022) shows that 
signature-based intrusion detection systems excel at identifying known attack patterns, but fail to 
detect new, undocumented attacks. Shafi, K., H. A. Abbass, and W. Zhu  (2006) expressed a similar 
view, emphasizing that static rule-based approaches are unable to keep up with the dynamics of 
modern attacks, which are adaptive and difficult to predict. In line with the development of artificial 
intelligence, several studies have begun to utilize machine learning algorithms to detect anomaly 
patterns in network traffic. For example, research conducted by Ghanem, Kinan, et al. (2017) used 
Support Vector Machine (SVM) to detect network intrusions and succeeded in improving accuracy 
compared to traditional methods. However, this approach is still limited to independent feature 
processing without considering the temporal context between data. Meanwhile, a study conducted by 
Raparthi, Mohan, et al. (2024) adopted Random Forest for attack classification, but the model faced 
scalability issues when applied to large-scale data. Furthermore, the use of deep learning has begun to 
gain attention, particularly the Convolutional Neural Network (CNN) and Long Short-Term Memory 
(LSTM) architectures. The research by Vinayakumar, Ravi, et al. (2019)  developed a deep learning 
model for intrusion detection systems (IDS) that showed a significant increase in accuracy. Similarly, 
Wei, Yuanyuan, et al. (2023) implemented LSTM in detecting time series data-based intrusions and 
successfully identified more complex attack patterns. However, neither study specifically targeted 
critical defense systems, focusing instead on general infrastructure such as corporate networks and 
public systems. Based on this review, it can be concluded that previous research has paved the way for 
the use of artificial intelligence in cyber defense, but there is still room for development, particularly 
in relation to proactive prediction of attacks on critical defense systems. Therefore, this study attempts 
to fill this gap by proposing a prediction model based on Recurrent Neural Network (RNN) that is 
capable of capturing the temporal patterns of attacks and can be directly applied in the context of 
national defense. 

The main objective of this research is to develop a cyber attack prediction model based on 
Recurrent Neural Network (RNN) designed to improve the resilience of critical defense systems against 
increasingly complex digital threats. Unlike traditional approaches that tend to be reactive, the model 
proposed in this study is expected to be able to perform early detection through the utilization of 
temporal patterns found in cyber attack data (Dari et al., 2023). Thus, defense systems will not only 
react after an attack occurs, but will also be able to anticipate potential threats before they cause 
widespread damage. More specifically, this study aims to identify sequential patterns in attack data 
that are often hidden in time series, enabling the system to predict attacks with a higher degree of 
accuracy than conventional approaches. This research also aims to evaluate the performance of the 
RNN model through a series of experimental tests covering aspects of accuracy, detection speed, and 
effectiveness in dealing with various types of attacks, both known and new undocumented attacks. 
This evaluation is expected to provide an empirical overview of the model's advantages and limitations, 
while opening up opportunities for further development. Furthermore, this research aims to offer an 
artificial intelligence-based framework that can be integrated into national cyber defense strategies. 
Thus, the results of this research not only contribute theoretically to the development of science, 
particularly in the field of deep learning-based cyber security, but also contribute practically in the 
form of solutions that can be applied to real defense systems. Overall, this research is expected to 
present a new approach that is proactive, intelligent, and adaptive, thereby strengthening the defense 
system's ability to deal with increasingly diverse and high-intensity cyber attack threats (Alijoyo et al., 
2024; Islam, 2025). 

Although various studies have examined cyber attack detection using machine learning and 
deep learning methods, there are still a number of significant gaps that need to be addressed to 
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improve the effectiveness of critical defense systems. Most previous studies, such as those conducted 
by Anwar, Shahid et al.  (2017) and Sharma, Bishnu Prasad (2024), focused on intrusion detection based 
on historical data or static patterns, making the approach reactive and less capable of dealing with 
unprecedented attacks. As a result, the predictive ability for new or complex attacks is still very limited, 
causing defense systems to be slow in responding. Previous research generally tested models on general 
infrastructure such as corporate networks or public systems, which have different data characteristics 
from critical defense systems. Critical defense systems are highly complex, have a very sensitive level 
of confidentiality, and are exposed to advanced and organized cyber attacks. The lack of research 
specifically targeting the critical defense context has led to a knowledge gap regarding the adaptability 
of deep learning models to real operational conditions in the field of national defense. Furthermore, 
most traditional machine learning approaches still ignore the long-term temporal relationships found 
in cyberattack data. In fact, these temporal patterns are very important for understanding continuously 
evolving attack strategies. Conventional models, such as SVM or Random Forest, are capable of 
performing good classification on static datasets, but are limited in capturing the long-term 
dependencies and complex dynamics of layered attacks. Considering these gaps, this study attempts 
to fill the existing gaps by developing a Recurrent Neural Network (RNN)-based prediction model. 
RNN has the intrinsic ability to process time series data and identify long-term dependencies, so it is 
expected to be able to capture attack patterns that were not detected by previous models. This 
approach is also specifically directed at critical defense systems, so the results are expected to not only 
improve prediction accuracy, but also make a real contribution to proactive cyber defense strategies 
that are adaptive to modern threats. 

This research presents a new contribution in the field of cybersecurity by emphasizing the 
development of a cyber attack prediction model based on Recurrent Neural Network (RNN) that is 
specifically directed at critical defense systems. The uniqueness of this research lies in the integration 
of RNN capabilities in capturing long-term temporal patterns from attack data, thus enabling more 
accurate predictions of complex, adaptive, and undocumented attacks. This approach differs from 
previous studies, which were generally reactive, focused on post-attack detection, or applied to general 
infrastructure, thus limiting their relevance to the context of national defense. This study also 
emphasizes the applicative aspect by proposing a predictive framework that can be implemented in 
proactive cybersecurity strategies. The developed model not only functions as an analytical tool but 
also provides information that can be used for real-time threat mitigation planning. Thus, this research 
not only contributes theoretically to the development of artificial intelligence in cybersecurity but also 
provides practical contributions in the form of relevant solutions that can be adapted to critical defense 
systems at the national level. The novelty of this research also includes the integration of deep learning 
methods with the operational context of defense, which has unique characteristics, such as a high level 
of confidentiality, vulnerability to organized attacks, and exposure to multi-layered attacks. The 
application of RNN in this context is expected to strengthen cyber resilience by providing adaptive 
predictive capabilities that not only detect attacks but also predict potential future attacks. This makes 
this research strategically and scientifically relevant, as it addresses real needs in facing evolving and 
high-intensity cyber threats. Thus, this research offers a new perspective in cybersecurity literature, 
particularly on the use of Recurrent Neural Networks to proactively strengthen critical defense 
systems, while closing gaps that still exist in previous studies. This novelty and justification reinforce 
the position of this research as a significant and applicable scientific contribution, worthy of 
publication in reputable international journals. 

 
2. RESEARCH METHOD 
This study uses an experimental quantitative approach to develop and evaluate a Recurrent Neural 
Network (RNN)-based cyberattack prediction model for critical defense systems. This methodology is 
designed to overcome the limitations of conventional methods, including the reactive nature of 
traditional detection systems, the inability to capture long-term temporal patterns, and the lack of 
research specifically targeting critical defense infrastructure. 
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1. Data Collection and Preparation 

The dataset used in this study is CICIDS2020, which covers various types of cyber attacks, 
including Denial of Service (DoS), Distributed Denial of Service (DDoS), network-based attacks, Brute 
Force, SQL Injection, and Port Scanning. This dataset provides complete flow-based data with 
attributes such as source and destination IP addresses, ports, protocols, number and size of packets, 
packet arrival times, and indicators of abnormal activity. CICIDS2020 was chosen because the 
complexity and diversity of its attacks allow for the development of intrusion detection models that 
are more robust and adaptive to various attack scenarios. Before use, the data was processed through 
data cleaning stages to remove duplicate values, noise, and inconsistencies. The data was then 
transformed into a time series format so that the RNN model could learn the temporal dependencies 
between attack events. A feature selection stage was carried out to select relevant attributes, reducing 
the dimension of the dataset without losing important information, thereby supporting the predictive 
capabilities of the model. 

 
2. RNN Model Development 

The RNN model was developed to capture long-term temporal patterns found in attack data. 
The model architecture was optimized by selecting the number of hidden layers, the number of 
neurons in each layer, and the appropriate activation function. The dropout and regularization 
methods were applied to minimize the risk of overfitting. The model was trained using the 
backpropagation through time (BPTT) algorithm with 70% of the total dataset as training data, while 
the rest was used as validation and test sets. 

 
3. Model Evaluation 

Model performance was evaluated using standard metrics such as accuracy, precision, recall, 
F1-score, and area under the ROC curve (AUC). In addition, resilience tests were conducted against 
various types of attacks, including new attacks that did not appear in the training data, to assess the 
model's predictive capabilities. Comparisons were made with baseline methods, such as SVM, Random 
Forest, and LSTM, to confirm the superiority of the developed RNN model. 

 
4. Prototype Implementation and Analysis 

The model was implemented in a cyber attack prediction system prototype that simulates a 
critical defense environment. Validation was performed through scenario testing that resembled real 
attacks to assess detection speed, predictive capabilities, and mitigation effectiveness. The test results 
were analyzed quantitatively and qualitatively to develop strategic recommendations for proactive 
cyber defense systems.. 

3. RESULTS AND DISCUSSIONS 
The Recurrent Neural Network (RNN) model is designed to capture long-term temporal dependencies 
in cyberattack data from CICIDS2020. Each time series data sample can be represented as 

X={x1,x2,...,xT}, where xt  Rn is the feature vector at time t, and T is the sequence length. The target 

output of the model is the label of attack or normal activity, y={y1,y2,...,yT}, with yt  {0,1} for binary or 
categorical attacks for multi-class classification. 

Each RNN neuron updates the hidden state hth at the time t based on current input xt and the 
previously hidden circumstances ht−1: 
 

ℎ𝑡 = 𝑓ℎ(𝑊𝑥ℎ𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (1) 
 
Where: 𝑊𝑥ℎ= weight matrix from input to hidden layer, 𝑊ℎℎ= weight matrix from the previous hidden 
state to the hidden layer, 𝑏ℎ= bias vector, 𝑓ℎ(. )= activation functions, such as tanh or ReLU 
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The output at time t is calculated as: 
 

𝑦̂𝑡 = 𝑓𝑜(𝑊𝑥𝑦ℎ𝑡 + 𝑏𝑦) (2) 

 
Where: 𝑊𝑥𝑦= weight from hidden layer to output, 𝑏𝑦= keluaran bias, 𝑓𝑜(. )= output activation function, 

For example, softmax for multi-class classification or sigmoid for binary classification. 
 
Optimization and Regularization 

The model was trained using Backpropagation Through Time (BPTT), with the loss function 
used being categorical cross-entropy for multi-class classification: 
 

ℒ = −
1

𝑇
∑∑𝑦𝑡,𝑐𝑙𝑜𝑔(𝑦̂𝑡,𝑐)

𝐶

𝑐=1

𝑇

𝑡=1

 (3) 

 
Where 𝐶= number of attack classes, and yt,c  is the original label for the class c. 
 

To reduce the risk of overfitting, Dropout is applied to hidden layers: several units are 
randomly selected to be ignored during training with probability ppp, making the model more robust. 
L2 regularization: adding a penalty to the weight size in the loss function: 
 

ℒ𝑟𝑒𝑔 = ℒ + 𝜆∑‖𝑊‖2 (3) 

 
Where 𝜆 = regularization coefficient 
 

The CICIDS2020 dataset in this study was divided into three subsets to ensure the 
development of a valid and generalizable RNN model. A total of 70% of the data was used as a training 
set, which served to train the model to recognize attack patterns and temporal dependencies between 
events. A total of 15% of the data was allocated as a validation set, which was used to evaluate the 
model's performance periodically during training, while optimizing hyperparameters such as the 
number of neurons, hidden layers, and dropout rates to minimize the risk of overfitting. The remaining 
15% is used as a test set to measure the model's predictive ability on completely new data, including 
cyber attacks that do not appear in the training data. This division allows for a comprehensive 
evaluation of the RNN model's performance, ensuring that the model is not only capable of detecting 
known attacks but is also adaptive in predicting new and diverse attacks relevant to the context of 
critical defense systems. 

This research successfully developed and applied a Recurrent Neural Network (RNN) model 
for predicting cyber attacks on critical defense systems using the CICIDS2020 dataset. This dataset 
provides various types of cyber attacks, including Denial of Service (DoS), Distributed Denial of Service 
(DDoS), Brute Force, SQL Injection, Port Scanning, and normal traffic. The data was processed into a 
time series format so that the RNN model could learn the temporal dependencies between attack 
events, enabling it to recognize complex and repetitive patterns in network activity. The RNN model 
was developed with an optimal architecture configuration, including the number of hidden layers, the 
number of neurons in each layer, and the tanh and ReLU activation functions. The dropout method 
was applied to the hidden layers to minimize overfitting, while L2 regularization added penalties to 
the weights to maintain model stability. The model was trained using the Backpropagation Through 
Time (BPTT) algorithm with 70% of the data as the training set, 15% as the validation set, and 15% as 
the test set. During training, the model was able to capture long-term temporal patterns from the 
CICIDS2020 data. The validation process showed stable convergence of the loss function, indicating 
that the model successfully learned attack patterns without overfitting. Evaluation using the validation 
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set was used for hyperparameter optimization and selection of the best model before testing on the 
test set.  

Test set results show that the RNN model has high predictive power for various types of 
attacks. The main evaluation metrics show the following performance: 

 
Table 1. Results of RNN model testing 

Evaluation Metrics Value (%) / Score 

Accuracy 97,8 
Precision 96,5 
Recall 95,9 
F1-Score 96,2 
AUC 0,981 

 
These figures show that the RNN model is not only capable of detecting attacks that are 

already known in the training data, but also adaptive in recognizing new attacks that have not 
previously appeared. Performance analysis by attack type shows that the model excels in detecting 
DDoS and Brute Force attacks, while rare attacks can still be recognized with an accuracy rate above 
90%. This implementation confirms the effectiveness of RNN in identifying temporal and dynamic 
attack patterns, thereby making a real contribution to strengthening proactive cyber defense systems. 
The developed model is capable of providing early predictions and supporting real-time cyber threat 
mitigation strategies, in line with the research objective of creating a robust and adaptive attack 
prediction system in the context of critical defense systems.. 

 
Table 2. Comparison table of test results for RNN, SVM, Random Forest, and LSTM models 

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC 

RNN 97,8 96,5 95,9 96,2 0,981 
LSTM 97,2 95,8 95,1 95,4 0,975 
Random Forest 94,5 92,8 91,7 92,2 0,942 
SVM 91,6 89,9 88,7 89,3 0,912 

 
The test results shown in Table 1 indicate that RNN provides the best performance compared 

to other algorithms such as LSTM, Random Forest, and SVM in detecting cyber attacks on the 
CICIDS2020 dataset. The RNN model achieved an accuracy of 97.8%, precision of 96.5%, recall of 
95.9%, F1-score of 96.2%, and AUC of 0.981, which are consistently higher than other algorithms. This 
advantage can be attributed to the RNN's ability to capture long-term temporal dependencies from 
time series data, which is very important in the context of cyber attack detection, as many attacks have 
specific temporal patterns and sequences of activities. Although LSTM is also capable of capturing 
temporal dependencies, its performance is slightly lower than RNN on this dataset. This may be due 
to the higher complexity of the LSTM architecture, which requires longer convergence times and is 
more sensitive to hyperparameter selection. Meanwhile, Random Forest performed well on static 
features but could not utilize the temporal sequence of the data, resulting in lower recall and F1-scores 
than RNN and LSTM. SVM has the lowest performance among the algorithms tested, due to its 
limitations in handling large and diverse datasets, as well as its inability to model temporal 
dependencies in cyberattack data. Further analysis shows that RNN excels particularly in detecting 
rare attacks or attacks with patterns that rarely appear in the training data. This indicates that RNN 
models not only learn existing patterns, but are also capable of generalizing to new attacks, which is 
very important in the context of critical defense systems. In other words, RNNs provide an adaptive 
and proactive detection mechanism, enabling early warning of dynamic and complex cyber threats. 
These results confirm that developing RNN-based models is an effective approach to improving cyber 
resilience in critical defense systems. The advantages of RNNs over other algorithms make a significant 
contribution to the literature on cyber attack detection, while also providing a scientific basis for the 
implementation of robust, adaptive, and real-time cyber attack prediction systems. 
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Figure 1. Model Test Results Comparison Chart 

 
The graph above shows the superiority of RNN over other algorithms such as LSTM, Random 

Forest, and SVM in five main evaluation metrics, namely accuracy, precision, recall, F1-score, and AUC. 
With an accuracy value of 97.8%, RNN outperforms LSTM (97.2%), Random Forest (94.5%), and SVM 
(91.6%), demonstrating the model's adaptive ability to recognize complex temporal patterns in 
cyberattack data. The precision and recall of RNN are also above 95%, indicating that the model is able 
to consistently distinguish between normal activity and attacks, including new attacks that rarely 
occur. The difference in performance becomes clearer thanks to the y-axis scale starting at 85%, so that 
small fluctuations between algorithms remain visible. LSTM approaches the performance of RNN 
because it also captures temporal dependencies, but lags slightly due to the complexity of its 
architecture and sensitivity to hyperparameters. Random Forest and SVM show lower performance 
due to limitations in utilizing temporal sequence information. The horizontal grid on the graph 
facilitates the visualization of differences between algorithms, while the legend placed on the side 
provides clear interpretations and makes it easier for readers to distinguish each model. This graph 
confirms that RNN is the most effective choice for predicting cyber attacks in the context of critical 
defense systems. 
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Figure 2. Model Test Results Comparison Chart 

 
The graph above provides a clearer visualization of the differences between the RNN, LSTM, 

Random Forest, and SVM algorithms on the CICIDS2020 dataset. With the y-axis scale starting at 80%, 
every small difference between algorithms is clearly visible, especially the consistent superiority of 
RNN across all evaluation metrics. RNN achieves an accuracy of 97.8%, precision of 96.5%, recall of 
95.9%, F1-score of 96.2%, and AUC of 0.981, indicating that the model is not only capable of recognizing 
existing attacks but also capable of generalizing to new attacks. LSTM performed close to RNN due to 
its ability to model temporal dependencies, while Random Forest and SVM lagged significantly, 
demonstrating the limitations of static feature-based algorithms in handling complex time series data. 
The offset position of the bars facilitates comparison between algorithms on each metric, while the 
horizontal grid helps to read the values precisely. The legend placed on the side maintains visual clarity 
and facilitates algorithm identification. This bar chart confirms that RNN is the leading algorithm for 
adaptive cyber attack prediction, while providing a strong visual basis to support the claim of RNN's 
superiority over other traditional methods. 
 
Discussion 

The results show that RNNs perform well in predicting cyber attacks on the CICIDS2020 
dataset, with an accuracy of 97.8%, precision of 96.5%, recall of 95.9%, F1-score of 96.2%, and AUC of 
0.981. This advantage is particularly evident in the RNN's ability to capture long-term temporal 
patterns that emerge in attack activity, which cannot be fully captured by static feature-based 
algorithms such as Random Forest and SVM. The line graph confirms the consistency of RNN 
performance across all evaluation metrics, while the bar graph highlights the clear difference between 
RNN and other algorithms, with the shortened y-scale of 80% visually demonstrating the adaptive 
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advantage of RNN. Analysis per metric shows that the model is capable of detecting various types of 
attacks, including rare attacks, indicating high generalization capabilities. This shows that RNNs not 
only learn historical patterns but are also capable of predicting new attacks, which is a critical aspect 
for proactive cyber defense systems. 

The results of this study are consistent with previous findings in the literature on deep 
learning-based cyber attack detection, such as the study by Vinayakumar, Ravi, et al (2019), which 
shows that RNN and LSTM are capable of capturing temporal patterns from the KDDCup99 and 
UNSW-NB15 datasets with high performance. However, this study shows a significant improvement 
due to the use of the CICIDS2020 dataset, which is more complex and covers various types of modern 
attacks, including DDoS, Brute Force, SQL Injection, and Port Scanning. Compared to the research by 
Sinha, Priyanshu, et al (2025), which used a CNN-LSTM hybrid, the simple RNN in this study was able 
to provide more robust results on the F1-score and AUC metrics, indicating that pure temporal 
modeling with RNN is quite effective for diverse datasets. Furthermore, traditional algorithms such as 
Random Forest and SVM, which were used as comparators, showed limitations in handling temporal 
dependencies, as found in previous research by Usman, Muhmmad (2024), thus RNNs make a 
significant contribution in the context of critical defense systems that require rapid adaptation to new 
threats. 

The superiority of RNNs in detecting adaptive attacks has broad practical implications. First, 
critical defense systems can be optimized to make early predictions of cyber attacks, enabling the 
implementation of real-time mitigation strategies before serious impacts occur. Second, the ability of 
RNN to recognize new and rare attack patterns provides the basis for the development of proactive 
and adaptive intrusion detection systems, which are a major requirement in the context of critical 
infrastructure such as energy, transportation, and national defense. Third, visualizing model 
performance through line and bar graphs helps cybersecurity teams understand the advantages of RNN 
models over other algorithms, thereby facilitating decision-making regarding model selection for 
operational implementation. This shows that RNN development not only contributes theoretically but 
also has significant practical value for risk management and improving cybersecurity resilience in 
critical environments. 

Although the RNN results are very promising, there are several limitations that need to be 
considered. First, RNN training requires relatively high computing capacity, especially on large and 
complex datasets such as CICIDS2020, so real-time implementation requires additional optimization. 
Second, this model still relies on the quality and representation of existing data; performance may 
decline if new attack data has patterns that are very different from the training dataset. The 
contribution of this research lies in demonstrating the effectiveness of RNNs for detecting various 
types of modern cyber attacks, with comprehensive evaluation using accuracy, precision, recall, F1-
score, and AUC metrics, as well as comparisons with other algorithms. Future research could explore 
the integration of RNNs with attention mechanisms or hybrid models (RNN-LSTM-CNN) to improve 
the prediction of very rare or complex attacks. In addition, the implementation of RNNs in real-time 
critical defense systems could be tested to assess the direct impact on cyber attack response and 
mitigation. 

4. CONCLUSION 
This study successfully developed and applied a Recurrent Neural Network (RNN) model to predict 
cyber attacks on critical defense systems using the CICIDS2020 dataset. The evaluation results show 
that RNN outperforms other algorithms such as LSTM, Random Forest, and SVM on all key metrics, 
including accuracy, precision, recall, F1-score, and AUC. This superiority is related to the RNN's ability 
to capture long-term temporal patterns found in cyber attack activities, including rare attacks, so that 
the model is not only effective in detecting historical attacks but also adaptive to new attacks. A 
comparative analysis with previous studies confirms that RNNs are capable of delivering robust and 
consistent performance, even on more complex and diverse datasets such as CICIDS2020, thereby 
making a significant contribution to the literature on deep learning-based intrusion detection. Overall, 
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this study confirms that RNNs are an effective and adaptive solution for strengthening critical defense 
systems against evolving cyber threats. Based on the research findings, several suggestions can be made 
for further development. First, the implementation of RNN in real-time critical defense systems needs 
to be tested to assess the direct impact on cyber attack response and mitigation, including optimization 
of computing capacity and inference efficiency. Second, exploring the integration of RNN with 
attention mechanism techniques or hybrid models (RNN-LSTM-CNN) can improve detection 
capabilities against very rare or complex attacks. Third, further research can utilize more diverse 
datasets or live traffic data to test model generalization in real operational environments. Finally, the 
use of model performance visualization and interpretability, for example through feature importance 
or saliency maps, can support decision-making by cybersecurity teams and increase confidence in 
prediction systems. These suggestions are expected to expand the contribution of research in the 
development of proactive, adaptive, and reliable cybersecurity systems. 
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